第二相强化钨合金的制备方法与性能综述Review of Preparation Methods and Properties of Second Phase Reinforced Tungsten Alloys
李洲,魏世忠,徐流杰,赵云超,王长记
摘要(Abstract):
钨及其合金凭借高熔点、高热导率、低膨胀系数等特性被广泛应用于航空、军工、核工业等领域。但是钨又存在低温脆性、再结晶脆性等问题,在一定程度上限制了其应用。弥散强化和细晶强化是改善钨合金综合性能的有效途径,在钨基体中加入碳化物或氧化物等均匀分散的纳米第二相来强化晶粒和晶界可以提高合金综合性能。目前常用的弥散强化相为碳化钛(TiC)、碳化铌(NbC)、碳化锆(ZrC)等碳化物和氧化镧(La_2O_3)、氧化铝(Al_2O_3)、氧化钇(Y_2O_3)、氧化锆(ZrO_2)等氧化物。本文综述了国内外关于第二相强化钨合金的研究概况和最新进展,从材料制备、微观结构、力学性能等方面进行了对比和分析,并对未来高性能钨合金的发展趋势进行了展望。
关键词(KeyWords): 钨合金;第二相;制备方法;弥散强化;力学性能
基金项目(Foundation): 国家自然科学基金项目(U2004180);; 河南省自然科学青年基金(222300420155)
作者(Author): 李洲,魏世忠,徐流杰,赵云超,王长记
参考文献(References):
- [1]何培,姚伟志,吕建明,等.面向等离子体钨基材料的增韧研究最新进展[J].功能材料,2016,47(8):8064-8067.HE Pei,YAO Weizhi,LYU Jianming,et al.Recent progress on toughening of tungsten-based materials as plasma facing materials[J].Journal of Functional Materials,2016,47(8):8064-8067.
- [2]FERRONI F,YI X,ARAKAWA K,et al.High temperature annealing of ion irradiated tungsten[J].Acta Materialia,2015,90:380-393.
- [3]范景莲,黄伯云,汪登龙,等.纳米钨合金粉末的制备技术[J].稀有金属材料与工程,2001,30(6):404-405.FAN Jinglian,HUANG Boyun,WANG Denglong,et al.Preparation technology of nanometer size refractory high density tungsten based alloy composite powders[J].Rare Metal Materials and Engineering,2001,30(6):404-405.
- [4]杨毅超,李延超,李雅馨,等.磁控核聚变装置中钨基合金面向等离子体材料的研究现状与进展[J].中国钨业,2020,35(6):72-80.YANG Yichao,LI Yanchao,LI Yaxin,et al.Present siuation and research progress of tungsten-based alloy plasma-facing materials in magnetron nuclear fusion devies[J].China Tungsten Industry,2020,35(6):72-80.
- [5]PITTS R A,CARPENTIER S,ESCOURBIAC F,et al.A full tungsten divertor for ITER:Physits issues and design status[J].Journal of Nuclear Materials,2013,438:48-56.
- [6]UEDA Y,SCHMID K,BALDEN M,et al.Baseline high heat flux and plasma facing materials for fusion[J].Nuclear Fusion,2017,57:92006.
- [7]LI X Y,LIU W,XU Y C,et al.Radiation resistance of nanocrystalline iron:Coupling of the fundamental segregation process and the annihilation of interstitials and vacancies near the grain boundaries[J].Acta Materialia,2016,109:115-127.
- [8]PARK D Y,OH Y J,KWON Y S,et al.Development of non-eroding rocket nozzle throat for ultra-high temperature environment[J].International Journal of Refractory Metals and Hard Materials,2014,42:205-214.
- [9]吴复尧,程兴旺,才鸿年.穿甲弹用新型钨合金材料的研究[J].兵器材料科学与工程,2007,30(1):46-48.WU Fuyao,CHENG Xingwang,CAI Hongnian.Study on new type of tungsten alloy for penetrator[J].Ordnance Material Science and Engineering,2007,30(1):46-48.
- [10]QIN W,REN F,DOERNER R P,et al.Nanochannel structures in W enhance radiation tolerance[J].Acta Materialia,2018,153:147-155.
- [11]齐艳飞,王波,周景一,等.高热负荷作用下钨基材料损伤行为研究进展[J].稀有金属材料与工程,2018,47(6):1945-1950.QI Yanfei,WANG Bo,ZHOU Jingyi,et al.Research progress in damage behavior of tungsten-base materials under high heat load[J].Rare Metal Materials and Engineering,2018,47(6):1945-1950.
- [12]KWAK N,MIN G,OH Y,et al.Tantalum and molybdenum barriers to prevent carbon diffusion in spark plasma sintered tungsten[J].Scripta Materialia,2021,196(1):113759.
- [13]ZHANG Y H,HAN W Z.Mechanism of brittle-to-ductile transition in tungsten under small-punch testing[J].Acta Materialia,2021,220:117332.
- [14]刘珍,梁伟,许并社,等.纳米材料制备方法及其研究进展[J].材料科学与工艺,2000,8(3):103-108.LIU Zhen,LIANG Wei,XU Bingshe,et al.The preparation methods and scientific development of nanostructured materials[J].Materials Science and Technology,2000,8(3):103-108.
- [15]CHAUDHURI R G,PARIA S.Core/shell nanoparticles:classes,properties,synthesis mechanisms,characterization,and applications[J].Chemical Reviews,2012,112:2373-2433.
- [16]BARIK R K,BERA A,TANWAR A K,et al.A novel approach to synthesis of scandia-doped tungsten nano-particles for high-current-density cathode applications[J].International Journal of Refractory Metals and Hard Materials,2013,38:60-66.
- [17]DONG Z,HU W Q,MA Z Q,et al.The synthesis of composite powder precursors via chemical processes for the sintering of oxide dispersion-strengthened alloys[J].Materials Chemistry Frontiers,2019,3(10):1952-1972.
- [18]KIM Y,LEE K H,KIM E P,et al.Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process[J].International Journal of Refractory Metals and Hard Materials,2009,27(5):842-846.
- [19]张涛,严玮,谢卓明,等.碳化物/氧化物弥散强化钨基材料研究进展[J].金属学报,2018,54(6):831-843.ZHANG Tao,YAN Wei,XIE Zhuoming,et al.Recent progress of oxide/carbide dispersion strengthened W-based materials[J].Acta Metallurgica Sinica,2018,54(6):831-843.
- [20]张顺,范景莲,成会朝,等.Zr C对W合金性能与组织结构的影响[J].稀有金属材料与工程,2013,42(7):1429-1432.ZHANG Shun,FAN Jinglian,CHENG Huichao,et al.Influence of Zr C addition on properties and microstructure of Walloys[J].Rare Metal Materials and Engineering,2013,42(7):1429-1432.
- [21]DENG H W,XIE Z M,WANG Y K,et al.Mechanical properties and thermal stability of pure W and W-0.5 wt%Zr Calloy manufactured with the same technology[J].Materials Science and Engineering:A,2018,715:117-125.
- [22]XIE Z M,ZHANG T,LIU R,et al.Grain growth behavior and mechanical properties of zirconium micro-alloyed and nano-size zirconium carbide dispersion strengthened tungsten alloys[J].International Journal of Refractory Metals and Hard Materials,2015,51:180-187.
- [23]LIN J S,HAO Y C,LUO L M,et al.Microstructure and performances of W-Ti C-Y2O3composites prepared by mechano-chemical and wet-chemical methods[J].Journal of Alloys and Compounds,2018,732:871-879.
- [24]KITSUNAI Y,KURISHITA H,KAYANO H,et al.Microstructure and impact properties of ultra-fine grained tungsten alloys dispersed with Ti C[J].Journal of Nuclear Materials,1999,272:423-428.
- [25]XIE Z M,LIU R,FANG Q F,et al.Microstructure and mechanical properties of nano-size zirconium carbide dispersion strengthened tungsten alloys fabricated by spark plasma sintering method[J].Plasma Science and Technology,2015,17(12):1066-1071.
- [26]XIE Z M,LIU R,SHU M,et al.Extraordinary high ductility/strength of the interface designed bulk W-Zr C alloy plate at relatively low temperature[J].Scientific Reports,2015,5:16014.
- [27]MIAO S,XIE Z M,ZHANG T,et al.Mechanical properties and thermal stability of rolled W-0.5wt%Ti C alloys[J].Materials Science and Engineering:A,2016,671:87-95.
- [28]张顺.碳化物增强W合金组织结构及其力学性能的研究[D].长沙:中南大学,2012.ZHANG Shun.The study on microstructure and mechanical properties of carbide particle-reinforced tungsten-matrix alloy[D].Changsha:Central South University,2012.
- [29]LANG S T,YAN Q Z,WANG Y J,et al.Preparation and microstructure characterization of W-0.1wt.%Ti C alloy via chemical method[J].International Journal of Refractory Metals and Hard Materials,2016,55:33-38.
- [30]XIA M,YAN Q Z,XU L,et al.Synthesis of Ti C/W core-shell nanoparticles by precipitate-coating process[J].Journal of Nuclear Materials,2012,430:216-220.
- [31]LANG S T,YAN Q Z,SUN N B,et al.Microstructure,basic thermal-mechanical and Charpy impact properties of W-0.1wt.%Ti C alloy via chemical method[J].Journal of Alloys and Compounds,2015,660:184-192.
- [32]LANG S T,YAN Q Z,SUN N B,et al.Microstructures,mechanical properties and deuterium blistering behavior of chemically prepared W-Ti C alloys[J].Journal of Fusion Energy,2017,36(2/3):71-79.
- [33]BATTABYAL M,SCH?UBLIN R,SPAETIG P,et al.W-2wt.%Y2O3composite:Microstructure and mechanical properties[J].Materials Science and Engineering:A,2012,538:53-57.
- [34]BATTABYAL M,SP?TIG P,BALUC N.Effect of ion-irradiation on the microstructure and microhardness of the W-2Y2O3 composite materials fabricated by sintering and hot swaging[J].Fusion Engineering and Design,2013,88(9):1668-1672.
- [35]LIU R,ZHOU Y,HAO T,et al.Microwave synthesis and properties of fine-grained oxides dispersion strengthened tungsten[J].Journal of Nuclear Materials,2012,424:171-175.
- [36]LIU R,XIE Z M,FANG Q F,et al.Nanostructured yttria dispersion-strengthened tungsten synthesized by sol-gel method[J].Journal of Alloys and Compounds,2016,657:73-80.
- [37]KIM Y,LEE K H,KIM E P,et al.Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process[J].International Journal of Refractory Metals and Hard Materials,2009,27(5):842-846.
- [38]KIM Y,HONG M H,LEE S H,et al.The effect of yttrium oxide on the sintering behavior and hardness of tungsten[J].Metals and Materials International,2006,12(3):245-248.
- [39]VELEVA L,SCHAEUBLIN R,BATTABYAL M,et al.Investigation of microstructure and mechanical properties of W-Y and W-Y2O3materials fabricated by powder metallurgy method[J].International Journal of Refractory Metals and Hard Materials,2015,50:210-216.
- [40]VIEIDER G,MEROLA M,BONAL J P,et al.European development of the ITER divertor target[J].Fusion Engineering and Design,1999,46(2):221-228.
- [41]SMID I,AKIBA M,VIEIDER G,et al.Development of tungsten armor and bonding to copper for plasma-interactive components[J].Joumal of Nuclear Materials,1998,258:160-172.
- [42]WESEMANN I,SPIELMANN W,HEEL P,et al.Fracture strength and microstructure of ODS tungsten alloys[J].International Journal of Refractory Metals and Hard Materials,2010,28(6):687-691.
- [43]陈勇,吴玉程,于福文,等.氧化镧弥散强化钨合金的组织性能研究[J].稀有金属材料与工程,2007,36(5):822-824.CHEN Yong,WU Yucheng,YU Fuwen,et al.Study on structure and property of tungsten alloy strengthened with dispersed La2O3[J].Rare Metal Materials and Engineering,2007,36(5):822-824.
- [44]DONG Z,MA Z Q,DONG J,et al.The simultaneous improvements of strength and ductility in W-Y2O3 alloy obtained via an alkaline hydrothermal method and subsequent low temperature sintering[J].Materials Science and Engineering:A,2020,784:139329.
- [45]HU W Q,DONG Z,MA Z Q,et al.W-Y2O3composite nano powders prepared by hydrothermal synthesis method:co-deposition mechanism and low temperature sintering characteristics[J].Journal of Alloys and Compounds,2020,821:153461.
- [46]HU W Q,DONG Z,MA Z Q,et al.Microstructure refinement in W-Y2O3alloys via an improved hydrothermal synthesis method and low temperature sintering[J].Inorganic Chemistry Frontiers,2020,7:659-666.
- [47]孙静,黄传真,刘含莲,等.稳定氧化锆陶瓷的研究现状[J].机械工程材料,2005(8):1-3.SUN Jing,HUANG Chuanzhen,LIU Hanlian,et al.A Review on the stabilized zirconia ceramics doped with stabilizers[J].Materials for Mechanical Engineering,2005(8):1-3.
- [48]GHAMSARI M S,ABDUL-HAMID M A,RADIMAN S,et al.Carbonation effect on the synthesis of highly crystalline γ-alumina nanopowders[J].Materials Letters,2013,106(1):439-442.
- [49]LIU J L,SURYANARAYANA C,GHOSH D,et al.Synthesis of Mg-Al2O3 nanocomposites by mechanical alloying[J].Journal of Alloys and Compounds,2013,563:165-170.
- [50]ALIZADEH M,ALIABADI M M.Synthesis behavior of nanocrystalline Al-Al2O3 composite during low time mechanical milling process[J].Journal of Alloys and Compounds,2011,509(15):4978-4986.
- [51]ZAWRAH M F,ZAYED H A,ESSAWY R A,et al.Preparation by mechanical alloying,characterization and sintering of Cu-20%Al2O3nanocomposites[J].Materials and Design,2013,46:485-490.
- [52]WANG C J,ZHANG L Q,WEI S Z,et al.Microstructure and preparation of an ultra-fine-grained W-Al2O3composite via hydrothermal synthesis and spark plasma sintering[J].International Journal of Refractory Metals and Hard Materials,2018,72:149-156.
- [53]WANG C J,HUANG H,WEI S Z,et al.Strengthening mechanism and effect of Al2O3 particle on high-temperature tensile properties and microstructure evolution of W-Al2O3alloys[J].Materials Science and Engineering:A,2022,835:142678.
- [54]XIAO F N,MIAO Q,WEI S Z,et al.Uniform nanosized oxide particles dispersion strengthened tungsten alloy fabricated involving hydrothermal method and hot isostatic pressing[J].Journal of Alloys and Compounds,2020,824:153894.
- [55]LI Z,CHEN Y B,WEI S Z,et al.Microstructure characterization and properties of YSZ particles doped tungsten alloy prepared by liquid phase method[J].Materials Science and Engineering A,2022,832:142483.
- [56]LI Z,CHEN Y B,WEI S Z,et al.Effect of rotary swaging and subsequent annealing on microstructure and mechanical properties of W-1.5Zr O2 alloys[J].Journal of Alloys and Compounds,2021,875:160041.
- [57]LIU R,XIE Z M,ZHANG T,et al.Mechanical properties and microstructures of W-1%Y2O3 micro alloyed with Zr[J].Materials Science and Engineering A,2016,660:19-23.
- [58]CUI K,SHEN Y,YU J,et al.Microstructural characteristics of commercial purity W and W-1%La2O3 alloy[J].International Journal of Refractory Metals and Hard Materials,2013,41:143-151.
- [59]WANG Y K,MIAO S,XIE Z M,et al.Thermal stability and mechanical properties of Hf C dispersion strengthened W alloys as plasma-facing components in fusion devices[J].Journal of Nuclear Materials,2017,492:260-268.
- [60]MIAO S,XIE Z M,ZENG L F,et al.Mechanical properties,thermal stability and microstructure of fine-grained W-0.5wt.%Ta C alloys fabricated by an optimized multi-step process[J].Nuclear Materials and Energy,2017,13:12-20.
- [61]FANG Z Z,REN C,SIMMONS M,et al.The effect of Ni doping on the mechanical behavior of tungsten[J].International Journal of Refractory Metals and Hard Materials,2020,92:105281.
- [62]AGUIRRE M,MARTIN A,PASTOR J,et al.Mechanical behavior of W-Y2O3 and W-Ti alloys from 25℃to 1000℃[J].Metallurgical and Materials Transactions A,2009,40:2283-2290.
- [63]KRSJAK V,WEI S H,ANTUSCH S,et al.Mechanical properties of tungsten in the transition temperature range[J].Journal of Nuclear Materials,2014,450:81-87.
- [64]LEVIN Z S,HARTWIG K T.Strong ductile bulk tungsten[J].Materials Science and Engineering A,2017,707:602-611.
- [65]SHEN T,DAI Y,LEE Y.Microstructure and tensile properties of tungsten at elevated temperatures[J].Journal of Nuclear Materials,2016,468:348-354.
- [66]MAKAROV P,POVAROVA K.Development of tungsten-based vacuum melted and powder structural alloys[J].International Journal of Refractory Metals and Hard Materials,2002,20:277-285.
- [67]CHUVILDEEV V N,MOSKVICHEVA A V,BARANOV G V,et al.Superhard nano disperse tungsten heavy alloys obtained using the methods of mechanical activation and spark plasma sinteing[J].Technical Physics Leaers,2009,35 (11):1036-1039.
- [68]张俊,朱晓勇,罗来马,等.面向等离子体ODS-W复合材料的制备工艺[J].核聚变与等离子体物理,2014,34(4):348-354.ZHANG Jun,ZHU Xiaoyong,LUO Laima,et al.Preparation technology of plasma facing ODS-W composites[J].Nuclear Fusion and Plasma Physics,2014,34(4):348-354.
- [69]XIA M,YAN Q Z,XU L,et al.Synthesis of Ti C/W core-shell nanoparticles by precipitate-coating process[J].Journal of Nuclear Materials,2012,430(1/2/3):216-220.